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Abstract: As a result of the Gorkha earthquake in 2015, about 9000 people lost their lives and
many more were injured. Most of these losses were caused by earthquake-induced landslides.
Sustainable planning and decision-making are required to reduce the losses caused by earthquakes
and related hazards. The use of remote sensing and geographic information systems (GIS) for
landslide susceptibility mapping can help planning authorities to prepare for and mitigate the
consequences of future hazards. In this study, we developed landslide susceptibility maps using
GIS-based statistical models at the regional level in central Nepal. Our study area included the
districts affected by landslides after the Gorkha earthquake and its aftershocks. We used the 23,439
landslide locations obtained from high-resolution satellite imagery to evaluate the differences in
landslide susceptibility using analytical hierarchy process (AHP), frequency ratio (FR) and hybrid
spatial multi-criteria evaluation (SMCE) models. The nine landslide conditioning factors of lithology,
land cover, precipitation, slope, aspect, elevation, distance to roads, distance to drainage and distance
to faults were used as the input data for the applied landslide susceptibility mapping (LSM) models.
The spatial correlation of landslides and these factors were identified using GIS-based statistical
models. We divided the inventory into data used for training the statistical models (70%) and data
used for validation (30%). Receiver operating characteristics (ROC) and the relative landslide density
index (R-index) were used to validate the results. The area under the curve (AUC) values obtained
from the ROC approach for AHP, FR and hybrid SMCE were 0.902, 0.905 and 0.91, respectively.
The index of relative landslide density, R-index, values in sample datasets of AHP, FR and hybrid
SMCE maps were 53%, 58% and 59% for the very high hazard classes. The final susceptibility results
will be beneficial for regional planning and sustainable hazard mitigation.

Keywords: sustainable risk management; earthquake-induced landslide susceptibility mapping;
frequency ratio (FR); hybrid spatial multi-criteria evaluation (SMCE); R-index

1. Introduction

Mass movements are one of the major geological hazards in Nepal; almost 80% of the total area of
the country is prone to landslides [1]. Nepal is in the central part of the Himalayan mountain range,
located in the intercontinental collision zone where the Indian plate is subducting under the Eurasian
plate [2]. On 25 April 2015, an earthquake of magnitude (M) 7.8 struck Nepal and was followed by
several aftershocks. The earthquake shook most of the country and neighboring countries, and it was
one of the most powerful earthquakes since the Bihar–Nepal earthquake of 1934. The main event
and aftershocks triggered mass movements and resulted in damage to infrastructure and human life.
The Gorkha earthquake resulted in the deaths of more than 9000 people and is estimated to affect about
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eighty-five million people in Nepal and neighboring countries [3]. The estimates of previous studies as
to the number of landslides triggered by the Gorkha earthquake range between 3000 and 25,000 [4–9].
A landslide inventory is one of the essential aspects for landslide susceptibility evaluation [10,11].
In most of the studies related to the Gorkha earthquake, the emphasis was on the development of a
landslide inventory while using this information to develop a landslide susceptibility zonation for
the earthquake-affected region was largely neglected. There has been extensive work done on the
preparation of coseismic landslide inventories for susceptibility evaluations worldwide. The first
coseismic landslide inventory was prepared after the 1957 San Francisco earthquake [12,13]. Since then,
several researchers have attempted to prepare coseismic landslide inventories over the years. Due to
advancements in geographic information systems (GIS) and Earth observation (EO) technologies,
including semi-automatic and machine learning techniques, the preparation of a coseismic landslide
inventory is becoming more attainable and less time-consuming.

Landslide susceptibility mapping (LSM) is done by assessing the probability of a landslide
occurrence in a given region [14]. Over the years, landslide susceptibility mapping has become a
practical approach with the aim to obtain better insights into the potential slope failures. Remote
sensing and GIS techniques are the foundation of landslide susceptibility mapping. In this study,
we used landslide inventory data obtained from very high-resolution Digital Globe Worldview 2–3
imagery. Satellite imagery of high spatial resolution helps in identifying even the smallest of the slope
failures. Many previous studies have used very high-resolution satellite imagery to obtain landslide
inventory data, for instance [15] used 2 m Worldview-2 imagery to detect landslides caused by the 2010
Haiti earthquake. Another study used IKONOS-1 imagery for landslide detection in the Tangjiaoa,
Wanzhou district of China [16]. Reference [17] used different CNN models and three different machine
learning models, namely artificial neural network (ANN), support vector machines (SVM), and random
forest (RF) for landslide detection and inventory dataset production. High-resolution satellite imagery
data is useful to generate input datasets for LSM. Integration of different models for the identification
of probable areas of landslide occurrence through LSM is a recognized approach for sustainable
risk mitigation [18]. Access to accurate inventory data along with hazard conditioning factors using
both data-driven and knowledge-based models have yielded successful results for LSM in different
studies [19–21]. Several studies have used expert knowledge-based models for conducting LSM.
A range of models is used in these studies, including the analytical hierarchy process (AHP) [22–25].
Although the AHP yields accurate results in natural hazard susceptibility modelling and mapping,
it has been proved that there is a degree of uncertainty associated with the resulting maps. Therefore,
the AHP model is not always a satisfactory model for susceptibility mapping based on decision
makers’ preferences. A number of attempts have been made to improve the accuracy of the AHP as it
is potentially a valuable tool for susceptibility mapping [19,26].

Currently, data-based models show fairly good results in the natural hazard susceptibility
assessments [27–29]. We used a data-based frequency ratio (FR) model for LSM in the Gorkha region.
FR is based on data from previous landslides and causal factors and their spatial coverage [30]. Several
studies used FR to generate LSMs at regional or small scales, such as [24,30–36]. A study carried out in
Selangor, Malaysia by [37] concluded that the FR model shows a correlation between landslide causal
factors and the location of past landslides in a given study area. As the weightings of the FR model
are directly based on the density of the past landslides in the study area, it is sensitive to the use of
different training datasets.

Several researchers have integrated different models to improve the susceptibility assessment of
landslides. These studies used a range of models. For example, the entropy method, logistic regression
(LR) and support vector machine (SVM) were combined for LSM by [34], and the ensemble weights of
evidence, LR and random forest models were integrated into a hybrid approach for LSM in Shaanxi
Province, China by [38]. The integration of the AHP model with a sensitivity and uncertainty analysis
led to better results of LSM in a study that have done with [39,40].
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In this study, the integration of the AHP and FR models was used as the theoretical background
of the spatial multi-criteria evaluation (SMCE) model. The multi-criteria evaluation (MCE) is a
decision-based approach in which alternatives are evaluated in a tree-like hierarchy of criteria and
objectives [41]. There are several stages in carrying out a hybrid SMCE. Firstly, a problem analysis is
carried out by making a tree-like hierarchy; this is followed by the standardization of the weights of
the factors and the generation of the final composite maps [41–44]. The hybrid SMCE model yielded a
higher prediction accuracy, resulting in higher reliability of the generated landslide maps, compared
to FR, SVM, index of entropy (IOE) and the weighted linear combination (WLC) models implemented
in a study done in the Wunning area in China by [45].

We used the AHP, FR, and hybrid SMCE models to carry out LSM for the study area. First, the
AHP model was created based on expert knowledge, which was used to assign weights to factors. Then,
the FR model was used to generate landslide susceptibility maps based on a data-driven approach.
LSM was carried out based on different class frequency ratios of landslide inventory data. Finally,
the third landslide susceptibility map was generated using the hybrid SMCE model, which is the
integration of the AHP and FR models. In this study, we selected the region most affected by landslides
after the earthquake; the districts are Gorkha, Rasuwa, Sindhupalchok, Dhading, Nuwakot, and
Dholaka. GIS-based landslide susceptibility maps were produced using the three statistical models
AHP, FR and hybrid SMCE. The validation of the three models was carried out using two different
accuracy assessment methods and the validation inventory dataset of the past landslide occurrences in
our case study area.

2. Study Area and Inventory Data Set

The epicenter of the earthquake was in the Gorkha district and its aftershock was about 140 km
away in the Dholaka district. But landslides triggered by the main event and several aftershocks were
scattered all over central Nepal. We have selected seven districts that were severely affected by the
earthquake. The study area covers a 14,502 km2 region spanning most of central Nepal. The area has
two major drainage systems, namely Narayani and Saptakoshi [6]. A total of 23,439 landslides have
been selected for the landslide susceptibility evaluation (see Figure 1).

Geologically, the study area lies within the Himalayan fold and thrust zone of central Nepal, which
resulted from the collision of the Indian plate with the Eurasian plate [2]. The collision led to extensive
crustal shortening and upheaval, resulting in the formation of the Himalaya, the quintessential collision
orogen. Himalayan seismicity is attributed to the movement of the Indian plate relative to the Eurasian
plate at a rate of about 5 cm per year. When the convergence is locked in some areas, the energy is
ultimately released in the form of tremors along the mountain range and in its surroundings [46].

Landslide Inventory Data Set

The landslide inventory map illustrates the active landslide sites and their properties, such as
landslide type, structural attributes, and distance to roads. These slope deformations are linked to the
morphological, geological and climatic conditions of the locations; thus, these attributes can predict
the conditions that could cause future landslides in the area. The first step was to identify the landslide
locations in the satellite imagery and evaluate landslide-prone areas. Then active landslide locations
were mapped and an inventory was prepared using satellite image interpretation, an extensive field
survey, and literature search for historical landslide records [47]. The landslide inventory dataset was
generated by comparing high-resolution imagery of pre- and post-event (Figure 2) data taken from the
USGS data catalogue [48]. The satellite imagery was obtained from Digital Globe Worldview 2 and 3,
and the spatial resolution of the imagery used for mapping the landslides was very high in the study
area. The images were collected between 26th April and 15th June 2015, thus covering the main event
of the Gorkha earthquake and its aftershocks. For our study area, a total of 23,439 landslide locations
were identified.
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Figure 1. Map showing the location of the study area and field photographs: (a) Mailung Khola and 
(b) camp near Mailung Khola hydropower plant (c) road section near Ramche (d) road section near 
Syaprubesi. 

Figure 1. Map showing the location of the study area and field photographs: (a) Mailung Khola
and (b) camp near Mailung Khola hydropower plant (c) road section near Ramche (d) road section
near Syaprubesi.
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Our landslide inventory dataset was separated into a training and a testing dataset. Dividing the
inventory dataset randomly for training and validation purposes is a general approach that has been
used in several natural hazard studies [49,50]. Samples are chosen based on the size of the study area,
completeness of the inventory, and the methodology used. Currently, there is no standard methodology
for the selection of testing and training samples [51]. Reference [52] have given different ratios for
various methods, and [53] also used the same ratio for prediction of landslides using computational
methods. To make our models computationally robust, the inventory dataset was randomly divided
into two sections, with 70% (16,407) used for training the models and 30% (7032) used for validating
the results (see Figure 2).
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Figure 2. Landslide inventory map of the study area with the distribution of training and
validation datasets.

3. Materials and Methods

3.1. Landslide Conditioning Factors

The nine factors that most affect landslide occurrence in our study area are categorized into the
four main groups of topographical, geological, hydrological and anthropogenic factors. Topographical
factors include slope, elevation and aspect. The SRTM digital elevation model (DEM) with a 30 m
spatial resolution was used as the basis of our slope and aspect layers. The slope angle is considered
as the most critical factor of the slope stability assessment in any LSM study [54]. The elevation is
another crucial factor of LSM as most geomorphological and geological processes are controlled by this
topographical factor [55]. It was also used to describe the local relief of the study area. Relief classes
denote the elevation range from the lowest to the highest point in the study area [56]. Five altitude
classes were defined to determine the density of landslides in different relief classes. The aspect factor
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affects the landslide occurrence as it is related to meteorological factors such as the direction of the
precipitation and the average amount of sunshine.

The geological factors in this study are defined as lithology and distance to faults. These geological
factors were extracted from the available 1:250,000 geological map of central Nepal. Different lithologic
units and proximity to faults play a significant role in controlling the landslides. More than 40% of the
lithology of the study area is categorized as gneiss and migmatite. The distance to faults is essential,
especially in our case study, since areas closer to the faults were more affected by the earthquake [6].

Precipitation and the distance to drainage were our hydrological factors. Drainage is also one of
the causal factors of the landslides because they cause erosion and saturation of the materials in the
lower parts of valleys [57,58].

The anthropogenic factors are the distance to roads and land use. Human activities, and road
construction in particular, cause a diminution in the load on either the toe or the topography of slopes.
Finally, to apply the three models, the layers of all conditioning factors were included in the GIS
environment as raster layers with a 30 m resolution (see Figure 3). The scale of 30 m was selected
to match the spatial resolution of the SRTM 30 m data on which the topography data set factors
were based.
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Figure 3. Thematic maps used in this study (a) land cover, (b) distance to roads, (c) elevation, (d)
lithology, (e) faults, (f) drainage, (g) precipitation, (h) slope angle, and (i) slope aspect.

3.2. Methods

Landslide susceptibility analysis was carried out using the AHP, FR and hybrid SMCE models in
the region affected by the Gorkha earthquake.

3.2.1. Analytical Hierarchy Process (AHP)

The AHP developed by [59] has been used to weight related factors of any spatial problem in
GIS environments [60]. It is a common tool for analysis to support site selection, urban planning,
and natural hazard susceptibility analysis [61]. The AHP is a decision-making process based on
multi-criteria and multiple objectives and involves the participation of experts [62]. A hierarchical
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order of factors and numerical values is established based on the importance of each factor [63].
Subsequently, these factors are integrated, and each factor is weighted according to its importance [64].
The AHP is used to establish the correlative pairwise comparison matrix. This matrix is constructed
using values that represent experts’ judgments by comparing the importance of each factor in relation
to all the other related factors [65]. Each layer is based on a nine-point rating scale and added to the
matrix as developed by [66] (See Table 1). The decision maker specifies the value of each factor. Each
factor weight from the matrix class was multiplied by the weight class. Local representation of factors
in the study area determined the results of the susceptibility map. The factors were weighted using the
pairwise comparison matrices of the AHP based on expert knowledge. The principle of transitivity is
important in AHP for any given three factors (such as f1, f2 and f3), and is defined as follows; if f1 > f2

and f2 > f3, then f1 > f3. The principle of transitivity is a basis for conditioning factors weighing in
AHP. Due to this principle, a consistent pairwise comparison matrix would require that if 2f1 > f2

(i.e., f1 is two times more preferable than f2) and 4f2 > f3, then 8f1 > f3 to account for the transitivity
principle [19,67]. Therefore, it was necessary to compute the consistency of expert comparisons in
matrices in each stage [20]. Inconsistency can be defined based on the observation that λmax > n for
comparison matrices and λmax = n, if C is a consistent comparison. The consistency ratio (CR) is
defined by Equation (1):

CR = (λmax − n)/(RI(n − 1)), (1)

where RI is the random index of a randomly created pairwise comparison matrix for n = 2, 3, 4,
5, 6, 7, 8, and 9. If the consistency ratio is <0.10 it indicates an acceptable level of consistency,
whereas a CR > 0.10 points to a degree of inconsistency [68]. Our case study in this research is to
map areas susceptible to landslides. Accordingly, to calculate the criteria weights using the AHP
model, questionnaire forms were prepared to gather expert knowledge for layer weighting. Therefore,
nine local academic experts and twelve researchers and geologists from the international center for
integrated mountain development (ICIMOD) and national organizations involved in post-earthquake
reconstruction planning were asked to fill in the questionnaire, and a total of twenty-one forms were
obtained for layer weighting. The assessed weights of the nine layers were calculated using the AHP
model based on the resulting pairwise comparison matrices.

3.2.2. Frequency Ratio (FR)

FR is a useful geospatial assessment tool that provides the probabilities of the distribution of the
occurrence and non-occurrence of landslides for each class of related factors [36]. Classes are weighted
based on the ratio of observed landslides to the whole study area [58]. FR is one of the best geospatial
assessment tools to determine the spatial correlation between inventory data and the class of related
factors [69]. The number or percentage of the inventory data in each class indicates the significance of
the correlation with the landslide [70]. For computing the FR weights, the frequency ratios of the factor
classes were calculated based on our landslide inventory dataset. The percentage ratio for different
classes of each factor to the whole study area was calculated. The final LSM was generated by a linear
combination model (see Equation (2)) of the FR weights for all the factors.

LSMFR =
n
∑

i=1

k
∑

J=1
FRij

[
f actori

(
classj

)]
, (2)

where n is the number of factors and k is the number of classes in each factor that contributed to the
landslide susceptibility map generation. Thus, FRij is the FR weight of the j-th class in the i-th factor.
To prepare qualitative landslide susceptibility maps, the FR model was implemented using GIS tools.
The frequency ratio of each factor was calculated from the relationship of the area of the corresponding
class with the landslide events. The FR was calculated for all classes of each conditioning factor.
According to the FR model, the ratio is defined as the area where the landslide occurred to the total
area. This means that an FR value of 1 is an average value for the occurrence of a landslide in a
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particular area compared to the whole area. If the value is >1, it means the percentage of landslides
that occurred in the area is above the regional average and shows a high correlation, whereas values
lower than 1 indicate a lower correlation [71,72]. The generated landslide susceptibility map based on
the FR weights is shown in Figure 4.

3.2.3. Hybrid Spatial Multi-Criteria Evaluation (SMCE)

The hybrid SMCE model enables users to solve the spatial problems of natural hazard
susceptibility mapping [70]. Spatial features are defined as lines, points, and areas in this approach
and the generated final maps result from the consideration of landslide conditioning factors [73].
SMCE is an approach that makes it possible to incorporate spatial analysis and GIS to use both spatial
and non-spatial input data to produce final maps [74]. In hybrid SMCE, input layers are spatially
represented as factors. Based on the criteria tree, input layers are grouped weighted and standardized.
The input layers are standardized from their original values to the 0–1 value range.

Table 1. Pairwise comparison point based rating scale [75].

Importance Definition Explanation

1 Equal importance Contribution to objective is equal
3 Moderate importance The attribute is slightly favored over another
5 Strong importance The attribute is strongly favored over another
7 Very strong importance The attribute is very strongly favored over another

9 Extreme importance Evidence favoring one attribute is of the highest
possible order of affirmation

2, 4, 6, 8 Intermediate values When compromise is needed

The outputs of the hybrid SMCE were the index maps, which represent the match and mismatch
of criteria in different areas. The multi-criteria evaluation (MCE) of the AHP was used as the theory of
the hybrid SMCE model. The steps involved in the operation of the hybrid SMCE were the problem
analysis, weighting the factors, standardization, ranking the factors using priority ordering, and finally
producing the output map [41]. The conditioning factors were grouped into the four main groups of
topographical, geological, hydrological, and anthropogenic. The significance of each group on the
landslide susceptibility was calculated based on the AHP pairwise comparison matrix completed by
the same experts (see Table 2). The same methodology was used for weighting the factors categorized
into different hybrid SMCE groups. However, as there were some differences in the expert’s reports
regarding the pairwise comparison of the hybrid SMCE groups, we used the weighted average of
reported values for this matrix. Using the average of the comparison values of Saaty’s rating scale
(see Table 1) from different expert knowledge is a common approach for dealing with the uncertainty
sources in the multi-criteria decision analyses [60,63]. The hybrid SMCE resulting weight for each
conditioning factor is represented in Table 3. These weights are the same with those of used for the
AHP model resulting from the pairwise comparison matrix. However, in case of the hybrid SMCE, we
used the resulting weights from the FR model for the classes of each conditioning factor. Therefore, the
weightings of the factors were produced based on the AHP pairwise comparison matrices, whereas
the FR values were used for the classes. Hence, the final impact of each hybrid SMCE factor on the
resulting landslide susceptibility map was an integration of the weighting processes based on both the
AHP and FR models, and it was considered the result of both models.
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Table 2. The pairwise comparison matrix of the hybrid spatial multi-criteria evaluation (SMCE) groups
and the resulting weights.

Groups Topography Geological Hydrological Manmade Weights

Topography 1 - - - 0.30
Geological 1 1 - - 0.30

Hydrological 0.83 0.83 1 - 0.25
Manmade 0.5 0.5 0.6 1 0.15

Table 3. Weights for groups and factors based on the hybrid SMCE model.

Groups Hybrid SMCE Group Weights Factors Hybrid SMCE Factor Weights

Topography 30 DEM 0.3
Slope 0.36

Aspect 0.34
Geological 30 Faults 0.4

Lithology 0.6
Hydrological 25 Drainage 0.5

Precipitation 0.5
Manmade 15 Land use 0.8

Distance to roads 0.2

4. Results

To generate the landslide susceptibility maps to identify the areas that are highly susceptible
to landslides, three different models were used in this study. The output values of the AHP and
FR models were represented in Tables 4 and 5, respectively. The resulting weights from each model
were applied to weight the conditioning factors and classes in a GIS environment. The derived FR
value of over unity shows a strong relationship between the landslide data of the training inventory
dataset high landslide susceptibility. FR values of less than unity show a low susceptibility. This is also
true for the resulting factor weights from the AHP. Therefore, higher AHP weights indicated a high
susceptibility. The weightings of the FR model were derived based on our produced inventory data set.
However, those of the AHP model were generated according to the expert preferences in the pairwise
comparison matrices. The weightings for sub-criteria classes from both the FR and AHP models
followed the same pattern, there were some big differences in the first class of land use, distance to
faults, distance to roads, and slope factors. According to the results based on expert knowledge, the
factor of lithology containing the quartzite rock formation had the most significant impact on landslide
occurrence, and this class got the lowest FR value. However, the rest of the classes were approximately
the same in terms of the FR value. This is also the case for the weightings of the classes of the land
use factor.

For the hybrid SMCE approach, the main groups and their corresponding factors were weighted
based on the AHP model, and the FR values were considered for the classes of the factors. Thus, the
resulting landslide susceptibility map based on the hybrid SMCE approach was a combination of the
results of both the AHP and the FR models. Figure 4 shows the resulting landslide susceptibility maps
obtained from each model. The natural breaks classification technique was used to classify similar
values separated by breakpoints. This is a common and useful technique for classification of any
hazard susceptibility map. The results were interpreted as belonging to the same class when they
were values close to each class boundary, e.g., values between “low” and “moderate” susceptibility.
Thus, the resulting landslide susceptibility maps were classified into five classes of susceptibility using
the natural breaks classification technique. These results were validated using the 30% validation
inventory dataset. We explain the validation approach and results in the next section.
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Table 4. Pairwise comparison matrix for the analytical hierarchy process (AHP) model.

Factors Classes Pairwise Comparison Matrices Eigenvalues CR Number of
Landslides

Land use

Forest 1 0.37 11,854
Shrub land 1/5 1 0.166 782
Grassland 1/3 1/3 1 0.126 4803

Agriculture 1/3 1/3 1 1 0.153 5555
Barren 1/5 1/2 1/3 1/5 1 0.063 316

Waterbody 1/5 1/2 1/3 1/3 1/2 1 0.053 31
Snow cover 1/5 1 1/2 1/3 1 1 1 0.068 97

0.092

Precipitation
(mm)

950–1725 1 0.067 1349
1725–2500 2 1 0.147 5296
2500–3275 7 3 1 0.493 9456
3275–4050 5 2 1/2 1 0.291 7275

0.006

Lithology

Glacier 1 0.034 8
Fluvial calcareous 2 1 0.062 79

Fluvial non-calcareous 3 2 1 0.098 260
Slate/ phyllite 5 3 2 1 0.161 1151

Quartzite 8 4 3 2 1 0.293 2429
Gneiss 9 5 4 3 1 1 0.35 19,512

0.009

Distance to
fault (m)

(1) 0–2000 1 0.641 4161
(2) 2000–4000 1/2 1 0.221 3471
(3) 4000–6000 1/3 1/3 1 0.086 2690

(4) 6000 < 1/2 1/2 1 1 0.050 13,117
0.03

Distance to
drainage (m)

<200 1 0.41 8942
200–400 1/2 1 0.254 4708
400–600 1/3 1/2 1 0.152 3047
600–800 1/4 1/3 1/2 1 0.104 2038

>800 1/4 1/3 1/2 1/2 1 0.078 4703
0.032

Slope (%)

0–10 1 0.053 733
10–20 3 1 0.067 2380
20–30 8 7 1 0.235 5600
30–40 9 8 3 1 0.325 8922
>40 9 8 3 3 1 0.320 5773

0.054

Elevation (m)

(1) <1000 1 0.133 1704
(2) 1000–3000 5 1 0.566 18,520
(3) 3000–4500 2 1/3 1 0.206 3001

(4) > 4500 1 1/5 1/2 1 0.093 188
0.024

Aspect

(1) Flat 1 0.195 1303
(2) North 1/2 1 0.172 4419
(3) East 2 1 1 0.291 9219
(4) West 1 1 1/2 2 1 0.193 5399
(5) South 1 1 1/2 1/2 1 1 0.147 3068

0.058

Distance to
roads (m)

(1) 0–200 1 0.527 11,316
(2) 200–400 1/3 1 0.315 5403
(3) 400–600 1/5 1/5 1 0.095 2634

(4) 600< 1/6 1/6 1/2 1 0.061 4085
0.069
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Table 5. The normalized weights for the classes of the factors based on the frequency ratio (FR) model.

Classes Pixels of
Each Class % of Pixels Landslide

Pixels % of Pixels FR

Land use

Forest 6,769,546 42.22 7,357,500 50.63 0.207
Shrub land 436,382 2.72 495,900 3.41 0.216
Grassland 2,428,461 15.14 3,038,400 20.90 0.238

Agriculture 3,691,183 23.02 3,378,600 23.25 0.174
Barren 951,485 5.93 182,700 1.25 0.037

Waterbody 34,993 0.21 22,500 0.15 0.122
Snow cover 1,718,690 10.72 55,800 0.38 0.006

Precipitation
(mm)

950–1725 200,439 13.87 4,824,736 38.030 0.641
1725–2500 409,972 28.37 2,546,432 20.072 0.166
2500–3275 576,685 39.91 1,629,936 12.848 0.075
3275–4050 258,008 17.85 1,135,232 8.948 0.117

Lithology

Glacier 94,829 0.51 4500 0.03 0.021
Fluvial calcareous 341,548 1.85 43,200 0.30 0.055

Fluvial non-calcareous 427,676 2.31 157,500 1.08 0.160
Slate/phyllite 3,334,366 18.04 717,300 4.94 0.093

Quartzite 3,671,637 19.86 1,473,300 10.15 0.174
Gneiss 10,615,038 57.42 12,123,000 83.50 0.496

Distance to
fault (m)

(1) 0–2000 1,378,839 7.95 2,583,900 17.77 0.353
(2) 2000–4000 1,361,041 7.85 2,114,100 14.54 0.293
(3) 4000–6000 1,329,324 7.67 1,678,500 11.55 0.238

(4) 6000< 13,273,150 76.54 8,160,300 56.14 0.116

Distance to
drainage (m)

<200 3,285,083 17.83 4,824,736 38.03 0.362
200–400 2,625,570 14.25 2,546,432 20.07 0.239
400–600 2,280,177 12.38 1,629,936 12.85 0.176
600–800 1,907,245 10.35 1,135,232 8.95 0.147

>800 8,323,424 45.18 2,550,352 20.10 0.076

Slope (%)

0–10 1,158,724 6.76 425,055 3.05 0.076
10–20 3,806,967 22.21 1,432,083 10.27 0.078
20–30 6,322,939 36.89 3,342,678 23.98 0.110
30–40 4,377,817 25.54 5,345,525 38.35 0.254
>40 1,474,304 8.60 3,393,546 24.35 0.480

Elevation
(m)

(1) <1000 2,976,275 17.33 1,030,307 7.39 0.152
(2) 1000–3000 7,962,478 46.37 10,985,916 78.80 0.607
(3) 3000–4500 3,586,956 20.89 1,816,616 13.03 0.223

(4) >4500 2,646,440 15.41 109,497 0.79 0.018

Aspect

(1) Flat 1,899,660 11.08 1,480,366 10.62 0.113
(2) North 3,304,522 19.28 3,542,704 25.42 0.279
(3) East 4,238,423 24.73 4,625,604 33.18 0.298
(4) West 4,004,391 23.36 2,661,554 19.09 0.190
(5) South 3,693,755 21.55 1,628,661 11.68 0.119

Distance to
roads (m)

(1) 0–200 9,064,140 49.098 6,143,424 48.39 0.234
(2) 200–400 3,973,078 21.521 4,304,160 33.91 0.374
(3) 400–600 1,237,434 6.703 1,048,992 8.26 0.293

(4) 600< 4,186,516 22.677 1,197,952 9.44 0.099
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5. Validation

In this section, we outline two different validation methods, which are widely used in the accuracy
assessment of natural hazard susceptibility mapping. Validation is an important part of preparing
natural hazard susceptibility maps to predict possible future events [76]. To ascertain the success of
applied landslide susceptibility models, we compared the resulting maps with the landslide inventory
data from the study area. Analyzing the conformity between the inventory data and the resulting maps
of the applied models can give a clear indication as to the effectiveness of each model for LSM and
indicate whether the applied models could correctly predict areas that are susceptible to landslides.
The locations of the historical landslides support the modelling and pattern recognition. Addressing
more accurate areas that were exposed and susceptible to landslides becomes an advantageous driver
to inform spatial managers in order to inform sustainable risk management and landslide mitigation.
It would be useful for minimizing the adverse impacts, mainly by saving lives of the local people who
live in such susceptible areas and protecting public properties in the area under investigation [44].
In this study, 30% (7032 points) of the landslide points of the inventory data set was reserved for the
validation. The receiver operating characteristics (ROC) curves and the relative landslide density
method (R-index) were used for the accuracy assessment of the resulting landslide susceptibility maps
based on the AHP, FR and hybrid SMCE models. After preparing susceptibility maps using the three
models, we compared the results with the ground truth at a randomly selected sub-area as shown
in Figure 5. The presented graphical verification indicates that the hybrid SMCE model gave a more
accurate representation of the landslides that fell into the very high susceptibility class. Validation
of the results showed good agreement between the observed and the predicted values for the hybrid
SMCE model.
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5.1. Receiver Operating Characteristics (ROC)

The ROC curve [77] was used to validate different resulting landslide susceptibility maps using
our validation data. The ROC approach displays a full scene of trade-off among the true-positive rate
(TPR) and the false-positive rate (FPR) in the landslide susceptibility maps [78]. ROC curves were
calculated for all three resulting landslide susceptibility maps. The vertical axis indicates the TPR,
while the horizontal axis shows the FPR [79] (see Figure 6). TPRs are the pixels that correctly referred
to the landslide areas, while FPRs are the pixels wrongly labelled as landslides. To generating ROC
curves, we obtain the correctly and incorrectly labelled pixels in the inventory dataset and then plot
TPRs versus FPRs across the values that they took. The area under the curve (AUC) is the measure
that indicates the accuracy of the landslide susceptibility maps. The resulting AUCs indicate the
probability that more pixels were correctly labelled than incorrectly labelled [27]. Therefore, greater
AUC values indicate a higher accuracy of the resulting susceptibility map. The AUC values close to
unity indicate a comprehensive susceptibility map; a value of 0.5 shows a worthless map because it
means the map was generated by chance [80]. The AUC values obtained from the ROC approach
for AHP, FR and hybrid SMCE were 0.902, 0.905 and 0.910, respectively. Therefore, according to the
results, the hybrid SMCE model indicates a more accurate landslide susceptibility map compared to
the other two methods. Moreover, the resulting landslide susceptibility map based on the FR model
was more accurate than that based on the AHP, which means that the data-based model performed
better than the knowledge-based model. However, the result of the knowledge-based models may vary
if we use other experts for criteria weightings or other models (e.g., technique for order of preference
by similarity to ideal solution (TOPSIS) and conventional AHP). The resulting maps based on the
data-based models are also sensitive to the training data, and they will change even when using
another section of the inventory data set. The resulting landslide susceptibility map based on the FR
contained 6701 landslides in its very high susceptibility class, while those of the AHP and hybrid
SMCE contained 7948 and 4454, respectively.
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Figure 6. Receiver operating characteristics (ROC) representing quality method success rate curves for
the three methods.
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5.2. Relative Landslide Density (R-index)

The accuracy of the landslide susceptibility prediction was evaluated using an index of relative
landslide density (R-index). We used a total of 23,439 landslides to validate the results. The R-index is
given as follows, by [81] Equation (3):

R = (ni/Ni)/Σ(ni/Ni)) ×100 (3)

where ni is the percentage of the area that is susceptible to landslides in each susceptibility class, and
Ni is the percentage of landslides in each susceptibility class. Results show that the hybrid SMCE and
FR models have higher R-index values in the very high susceptibility classes. For low and moderate
susceptibility classes, the R-index values are very similar for all three models. The R-index values
for the very high susceptibility class in the hybrid SMCE, AHP and FR maps are 59%, 53%, and 58%,
respectively (Table 6).

Table 6. Resulting R-indexes for the landslide susceptibility mappings (LSMs) based on AHP, FR and
hybrid SMCE models.

Models Susceptibility
Class

Number
of Pixels Area (m2)

Area
Percentage (ni)

Number of
Landslides

Landslide
Percentage (Ni) R- Index

Hybrid
SMCE Very Low 53,100 481,282,200 3.35 130 0.55 3

Low 656,100 2,926,548,000 20.35 755 3.22 2
Moderate 4,664,700 6,508,665,000 45.26 5320 22.70 7

High 11,235,600 3,814,145,000 26.52 12,780 54.52 29
Very high 3,942,000 648,798,300 4.51 4454 19.00 59

AHP Very Low 6300 167,919,300 1.17 71 0.30 5
Low 64,800 1,554,764,000 10.81 74 0.32 1

Moderate 3,978,900 6,563,949,000 45.65 4528 19.32 9
High 9,473,400 4,198,336,000 29.20 10,816 46.15 32

Very high 7,028,100 1,894,469,000 13.17 7948 33.91 53

FR Very Low 61,200 154,024,200 1.07 69 0.29 4
Low 998,100 3,768,698,000 26.11 1150 4.91 3

Moderate 3,970,800 5,621,287,000 38.94 4504 19.22 8
High 9,657,900 3,801,150,000 26.33 11,015 46.99 27

Very high 5,905,800 1,090,157,000 7.55 6701 28.59 58

6. Discussion

The area covered by the very high susceptibility class varies from 648,798,300 m2 in the hybrid
SMCE model to almost three times that area in the AHP model (1,894,469,000 m2), and in the FR model
(1,090,157,000 m2) it is more than the area covered by the hybrid SMCE model. In the resulting AHP
map, 13.17% of the area falls into the very high susceptibility class, and the number of landslides
located in this class was 7948. In the resulting hybrid SMCE map, the corresponding values were
4.51% and 4454, respectively, which resulted in the highest R-index of all three models. As shown in
Figure 7, the R- index of the FR model was a value between that of the AHP and the hybrid SMCE.
In the map resulting from the FR model, 7.55% of the area falls into the very high susceptibility class
with a total of 6701 landslides in this area. The distribution of the locations of landslides in the different
classes of the resulting landslide susceptibility maps of a sub-area is shown in Figure 5. For the high
susceptibility class, the resulting R-index values and area covered by the corresponding class for the
implemented models were almost similar. But the number of landslides that fall into that class of the
hybrid SMCE model is higher than in the other two models. When considering the differences in areas
of the susceptibility classes in the resulting landslide susceptibility maps and the subsequent R-index
for each class, the hybrid SMCE model achieved better results overall.
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The overall results of the AUC values obtained from the ROC approach for the three applied
models showed that the hybrid SMCE generated a more accurate landslide susceptibility map than
the other two models. As the hybrid SMCE is an integration of the AHP and FR models, we can say
that the integration of knowledge-based models with the data-based ones achieves a more accurate
result for our case study. The R-index value for the very high susceptibility category of the resulting
susceptibility map based on the FR model is higher than that of the AHP. The higher accuracy of
the resulting landslide susceptibility map based on the FR model compared to the AHP model
shows that the data-based model performs better than the knowledge-based model. However, the
results of knowledge-based models may vary if we use other experts for criteria weightings or use
other models. Thus, the limitation of our work is that we used only the AHP model as our main
knowledge-based model. Different multi-criteria decision-making models have been used in several
spatial problem studies based on expert knowledge, and in some cases, the resulting accuracies of the
models were compared to each other. The AHP model was compared to the TOPSIS by [82] within a
fuzzy calculus. Both models were found to be suitable for their study. However, the TOPSIS model
yielded better results than the AHP. In another study, the AHP model was compared to the interval
pairwise comparison matrix (IPCM) by [83] and the second model was slightly more accurate in LSM.
Generally, the AHP model was optimized through integration with other methodologies, such as fuzzy
theory and the Dempster Shafer, to improve the accuracy of the final resulting landslide susceptibility
maps [84]. However, the conventional AHP model was used for LSM in our study. Consequently, as it
was not the intent of our study to analyze the data-based and knowledge-based models separately, but
rather to determine the value in combining them, the results of our study should not be considered
as the best in terms of the individual models. There are also several studies in the field of landslide
susceptibility that implement and compare data-based models [85]. The resulting maps based on the
data-based models are sensitive to the training data, and they will change by using a different selection
of the inventory dataset. On the one hand, the results from the knowledge-based models may vary
if using other experts for the criteria weightings. On the other hand, the resulting natural hazard
susceptibility maps based on the data-based models can easily be affected by the training data, and the
results will change if using training data from another source. Based on the data presented in Figure 8,
although most of the weightings of the sub-criteria based on the AHP and FR models are the same,
there are also some significant differences in the first class of the precipitation and distance to roads
factors. According to the results based on the AHP, the class of 2500–3275 (mm/yr) of precipitation
is the most important in terms of the landslide susceptibility. However, based on the weighting of
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the FR model, the class of 950–1275 (mm/yr) is the most significant. The weightings of the AHP
and FR models for the criteria of elevation and distance to drainage follow a very similar pattern.
The weightings of both models show that the impact of the drainage on the landslide susceptibility
continuously decreases with increasing distance.
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7. Conclusions

The production of landslide susceptibility maps is the first step in managing a sustainable
risk mitigation program in any landslide-prone area. For the entire area affected by the Gorkha
earthquake, no previous attempts have been made to produce susceptibility maps using multiple
statistical approaches. In this research, we produced landslide susceptibility maps for the entire
Gorkha region. As the purpose of LSM is to predict the probability of future landslide occurrence
in an area, our aim was to identify which of the statistical techniques (AHP, FR, or hybrid SMCE) is
more successful for LSM. For this purpose, we used a total of 23,439 landslides and randomly divided
them into two datasets, 70% for training and 30% for validation. The degree of fit and accuracy of the
resulting landslide susceptibility maps was validated using two approaches, namely the ROC and
R-index. The results of these validation approaches show that although all models were applicable for
landslide susceptibility mapping, the hybrid SMCE model (0.910) gives slightly better results for ROC
than the AHP (0.902) and FR (0.905) models. The hybrid SMCE resulted in better prediction accuracy
and reliability of output landslide susceptibility maps. In summary, these investigations have resulted
in the understanding that the integration of knowledge-based and data-based models outperforms the
use of these models individually for the generation of landslide susceptibility maps. The FR model
slightly outperforms the knowledge-driven AHP model. Reliable and precise susceptibility maps can
minimize the costs and damage from natural disasters, such as landslides, if prepared in advance.
The output maps can assist decision makers and planners to identify areas that are susceptible to
future hazards. It will lead to the mitigation of future damage to infrastructure and human life.
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